Please note that the program is published in Central European Summer Time (CEST).

Back to overview

Lecture

WEB Synthesis of silicon and silicon based thermoelectric materials from silicon slurries

Friday (25.09.2020)
10:55 - 11:10 F: Functional Materials, Surfaces, and Devices 1
Part of:



Z. Liu1,2,3, C. Blum1, U. Wolff1, R. He1, P. Ying1, N Pérez1, M. Baier4, C. Reimann4,

J. Friedrich4, G. Schierning1 and K. Nielsch1,2

1) Leibniz-Institut für Festk€orper- und Werkstoffforschung Dresden, 01069, Dresden, Germany

2) Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany

3) China Scholarship Council (CSC), funding No.201806080011

4) Fraunhofer Institut für Integrierte Systeme und Bauelementetechnologie, 91058, Erlangen, Germany

Abstract:

Silicon and some silicon-based alloys, due to be non-toxic and naturally abundant, may be good candidates for thermoelectric (TE) materials. However, the low efficiency and high cost may limit its development and applications. Meanwhile, the production of silicon slurries, waste materials, which originate from the processing of photovoltaic modules, is about 100,000 tons worldwide annually [1]. How to utilize these silicon slurries efficiently, therefore, is an urgent issue. Several works have demonstrated that silicon slurries were used to synthesize silicon or silicon-based alloys [2-5]. However, due to the existence of impurities in these slurries, the thermal and electrical transport are compromised, which leads to an unoptimized figure of merit. In this contribution, we combine the traditional metallurgical methods of material’s purification with thermoelectric bulk technology, and show that this combination has potential to solve this problem. Through removing the impurities in the silicon slurries, a higher zT value is obtained compared to the materials synthesized from commercially available pure silicon. The elemental composition, microstructures, thermal and electrical transport will be systematically investigated.

[1] Moen M, Halvorsen T, Mork K, Velken S. Met. Powder Rep. 2017, 72(3):182-187

[2] R. He, W. Heyn, F. Thiel et al. J. Materiomics 2019, 5(1): 15-33.

[3] Y. Isoda, S. Tada, H. Kitagawa et al. J. Electron. Mater. 2015, 45(3): 1772-1778.

[4] G. Mesaritis, E. Symeou, A. Delimitis et al. J. Alloys Compd. 2019, 775: 1036-1043.

[5] N. Drouiche, P. Cuellar, F. Kerkar et al. Renewable Sustainable Energy Rev. 2015, 52: 393-399.

 

Speaker:
Zhenhui Liu
Leibniz Institute for Solid State and Materials Research Dresden
Additional Authors:
  • Christian Blum
    Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden
  • Dr. Ulrike Wolff
    Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden
  • Dr. Ran He
    Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden
  • Dr. Pingjun Ying
    Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden
  • Dr. Nicolás Pérez
    Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden
  • Maximilian Beier
    Fraunhofer Institut für Integrierte Systeme und Bauelementetechnologie
  • Dr. Christian Reimann
    Fraunhofer Institut für Integrierte Systeme und Bauelementetechnologie
  • Dr. Jochen Friedrich
    Fraunhofer Institut für Integrierte Systeme und Bauelementetechnologie
  • Dr. Gabi Schierning
    Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden
  • Prof. Dr. Kornelius Nielsch
    Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden